metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dibromidobis(triphenylarsine)palladium(II)

Leo Kirsten* and Gideon Steyl

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa Correspondence e-mail: leokirsten@gmail.com

Received 24 November 2008; accepted 15 January 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.019; wR factor = 0.043; data-to-parameter ratio = 19.4.

In the title compound, $[PdBr_2(C_{18}H_{15}As)_2]$, the Pd^{II} ion resides on a centre of symmetry and is coordinated by two As atoms [Pd-As = 2.4184 (3) Å] and two Br anions [Pd-Br = 2.4196 (3) Å] in a slightly distorted square-planar geometry $[As-Pd-Br = 90.12 (1)^\circ]$. The crystal packing exhibits weak intermolecular $C-H\cdots$ Br interactions.

Related literature

For similar palladium structures containing triphenylphosphine and bromido moieties, see: Crawforth *et al.* (2005); Stark & Whitmire (1997); Rodriguez *et al.* (2007). For the crystal structures of related bromido arsine complexes, see: Singh *et al.* (1999); Phadnis *et al.* (2003*a*,*b*).

Experimental

Crystal data [PdBr₂(C₁₈H₁₅As)₂] $M_r = 878.66$ Monoclinic, $P2_1/n$ a = 9.3754 (11) Å b = 19.545 (3) Å c = 9.8151 (13) Å $\beta = 112.798$ (3)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1998) T_{min} = 0.264, T_{max} = 0.408 $V = 1658.1 (4) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 4.97 \text{ mm}^{-1}$ T = 100 (2) K $0.32 \times 0.23 \times 0.18 \text{ mm}$

18511 measured reflections 3619 independent reflections 3245 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.043$ S = 1.043619 reflections 187 parameters 8 restraints H-atom parameters constrained $\begin{aligned} &\Delta\rho_{max}=0.50 \text{ e } \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.34 \text{ e } \text{\AA}^{-3} \end{aligned}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C13-H13\cdots Br^{i}$ $C25-H25\cdots Br^{ii}$	0.95 0.95	2.90 2.98	3.807 (3) 3.914 (3)	160 168

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006); software used to prepare material for publication: *SHELXL97*.

Financial assistance from Professor A. Roodt and the University of the Free State is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2489).

References

- Brandenburg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crawforth, C. M., Burling, S., Fairlamb, I. J. S., Kapdi, A. R., Taylor, R. J. K. & Whitwood, A. C. (2005). *Tetrahedron*, **61**, 9736–9751.
- Phadnis, P. P., Jain, V. K., Klein, A., Schurr, T. & Kaim, W. (2003a). New J. Chem. 27, 1584–1591.
- Phadnis, P. P., Jain, V. K., Klein, A., Weber, M. & Kaim, W. (2003b). Inorg. Chim. Acta, 346, 119–128.
- Rodriguez, N., de Arellano, C. R., Asensio, G. & Medio-Simon, M. (2007). *Chem. Eur. J.* **13**, 4223–4229.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, A. K., Amburose, C. V., Kraemer, T. S. & Jasinski, J. P. (1999). J. Organomet. Chem. 592, 251–257.
- Stark, J. L. & Whitmire, K. H. (1997). Priv. Commun. 34, 9700007.

supplementary materials

Acta Cryst. (2009). E65, m218 [doi:10.1107/S1600536809001986]

Dibromidobis(triphenylarsine)palladium(II)

L. Kirsten and G. Steyl

Comment

Palladium complexes containing phosphine and bromo derivatives have been investigated in the past (Crawforth *et al.*, 2005; Stark *et al.*, 1997; Rodriguez *et al.*, 2007). The effect of phosphine substitution by arsine moieties in these complexes have received limited attention. Up to date the structures of only a few bromo arsine complexes have been characterized (Singh *et al.*, 1999; Phadnis *et al.*, 2003*a*; Phadnis *et al.*, 2003*b*).

The title compound, (I), crystallizes in the P2₁/n space group with the Pd atom on a centre of symmetry (0.5, 0.5, 0.5). A staggered conformation of the two triphenyl arsine fragments is supported by the Br—Pd—As—Cn torsion angles of -98.07 (6)° (Cn=C11), 146.61 (7)° (Cn=C21) and 22.87 (7)° (Cn=C31), respectively. A weak intermolecular interaction is observed between the bromo moiety and the hydrogen atoms of the triphenylarsine ligand (Table 2).

Experimental

The title compound was synthesized by the addition of AsPh3 (17 mg, 0.0059 mmol) to an acetone solution (15 cm³) of $Pd(Br)_2(COD)$ (10 mg, 0.027 mmol). Crystals suitable for diffraction were obtained by slow evaporation of the reaction mixture (yield 15 mg, 64%).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{ed}(parent)$.

Figures

Fig. 1. Molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (i) 1-x, 1-y, 1-z]. Hydrogen atoms have been omitted for clarity.

Dibromidobis(triphenylarsine)palladium(II)

Crystal data
$[PdBr_2(C_{18}H_{15}As)_2]$
$M_r = 878.66$
Monoclinic, $P2_1/n$

 $F_{000} = 856$ $D_x = 1.760 \text{ Mg m}^{-3}$ Mo K α radiation

Hall symbol: -P 2yn
<i>a</i> = 9.3754 (11) Å
<i>b</i> = 19.545 (3) Å
<i>c</i> = 9.8151 (13) Å
$\beta = 112.798 \ (3)^{\circ}$
$V = 1658.1 (4) \text{ Å}^3$
Z = 2

Data collection

Cuboid, orange $0.32 \times 0.23 \times 0.1$	18 mm

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.5 - 28.3^{\circ}$

Cell parameters from 8105 reflections

Bruker X8 APEXII 4K KappaCCD diffractometer	3619 independent reflections
Radiation source: fine-focus sealed tube	3245 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
Detector resolution: 512 pixels mm ⁻¹	$\theta_{max} = 27.0^{\circ}$
T = 100(2) K	$\theta_{\min} = 2.1^{\circ}$
φ and ω scans	$h = -10 \rightarrow 11$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$k = -23 \rightarrow 24$
$T_{\min} = 0.264, \ T_{\max} = 0.408$	$l = -12 \rightarrow 11$
18511 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.019$	H-atom parameters constrained
$wR(F^2) = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.0179P)^2 + 0.8574P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
3619 reflections	$\Delta \rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$
187 parameters	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
8 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, where *F* is the threshold expression of $F^2 > \sigma(F^2)$ and $F^2 = \sigma(F^2)$.

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pd	0.5000	0.5000	0.5000	0.01115 (5)
As	0.47028 (2)	0.402209 (10)	0.63768 (2)	0.01207 (5)
C11	0.5474 (2)	0.32083 (11)	0.5777 (2)	0.0159 (4)
C12	0.6082 (3)	0.26633 (13)	0.6727 (3)	0.0326 (6)
H12	0.6178	0.2690	0.7725	0.039*
C13	0.6551 (3)	0.20769 (14)	0.6211 (3)	0.0433 (7)
H13	0.6980	0.1705	0.6865	0.052*
C14	0.6401 (3)	0.20317 (14)	0.4774 (3)	0.0415 (7)
H14	0.6716	0.1628	0.4428	0.050*
C15	0.5795 (3)	0.25703 (15)	0.3832 (3)	0.0409 (7)
H15	0.5689	0.2539	0.2831	0.049*
C16	0.5337 (2)	0.31601 (12)	0.4331 (2)	0.0251 (5)
H16	0.4928	0.3533	0.3674	0.030*
C21	0.2577 (2)	0.37831 (11)	0.6001 (2)	0.0165 (4)
C22	0.2010 (2)	0.31345 (12)	0.5546 (2)	0.0210 (5)
H22	0.2666	0.2792	0.5419	0.025*
C23	0.0471 (3)	0.29836 (14)	0.5275 (2)	0.0300 (6)
H23	0.0067	0.2542	0.4936	0.036*
C24	-0.0461 (3)	0.34754 (15)	0.5498 (3)	0.0343 (6)
H24	-0.1500	0.3367	0.5342	0.041*
C25	0.0092 (3)	0.41231 (15)	0.5943 (3)	0.0359 (6)
H25	-0.0564	0.4460	0.6092	0.043*
C26	0.1618 (3)	0.42845 (13)	0.6177 (3)	0.0269 (5)
H26	0.1998	0.4735	0.6454	0.032*
C31	0.5682 (2)	0.40056 (11)	0.8519 (2)	0.0181 (4)
C32	0.4806 (3)	0.40942 (11)	0.9370 (2)	0.0250 (5)
H32	0.3719	0.4159	0.8900	0.030*
C33	0.5505 (3)	0.40885 (13)	1.0895 (3)	0.0357 (6)
H33	0.4899	0.4151	1.1469	0.043*
C34	0.7067 (4)	0.39928 (14)	1.1579 (3)	0.0411 (7)
H34	0.7540	0.3982	1.2628	0.049*
C35	0.7966 (3)	0.39115 (14)	1.0751 (3)	0.0397 (7)
H35	0.9052	0.3850	1.1233	0.048*
C36	0.7278 (3)	0.39204 (13)	0.9216 (3)	0.0288 (5)
H36	0.7891	0.3869	0.8646	0.035*
Br	0.73567 (2)	0.531376 (11)	0.70471 (2)	0.01978 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Pd	0.01348 (10)	0.00966 (11)	0.01033 (10)	-0.00012 (8)	0.00462 (8)	0.00050 (8)
As	0.01394 (9)	0.01108 (11)	0.01179 (10)	0.00054 (7)	0.00563 (7)	0.00151 (8)

supplementary materials

C11	0.0129 (9)	0.0133 (11)	0.0210 (10)	0.0004 (8)	0.0059 (8)	-0.0019 (8)
C12	0.0415 (13)	0.0221 (13)	0.0324 (13)	0.0100 (11)	0.0123 (11)	0.0061 (10)
C13	0.0366 (14)	0.0201 (14)	0.0622 (19)	0.0120 (11)	0.0070 (13)	0.0035 (13)
C14	0.0289 (13)	0.0295 (16)	0.0652 (19)	0.0042 (11)	0.0171 (13)	-0.0202 (14)
C15	0.0450 (15)	0.0405 (17)	0.0433 (16)	0.0013 (13)	0.0236 (13)	-0.0184 (13)
C16	0.0283 (11)	0.0247 (13)	0.0247 (12)	0.0017 (10)	0.0129 (9)	-0.0042 (10)
C21	0.0147 (9)	0.0209 (11)	0.0150 (10)	0.0005 (8)	0.0068 (7)	0.0053 (8)
C22	0.0227 (10)	0.0250 (13)	0.0178 (10)	-0.0031 (9)	0.0103 (8)	0.0015 (9)
C23	0.0256 (11)	0.0405 (16)	0.0227 (12)	-0.0133 (11)	0.0079 (9)	0.0030 (10)
C24	0.0190 (11)	0.0521 (18)	0.0313 (13)	-0.0023 (11)	0.0094 (10)	0.0178 (12)
C25	0.0258 (12)	0.0480 (18)	0.0398 (14)	0.0205 (12)	0.0192 (11)	0.0218 (13)
C26	0.0267 (11)	0.0240 (13)	0.0342 (13)	0.0056 (10)	0.0163 (10)	0.0084 (10)
C31	0.0271 (10)	0.0127 (11)	0.0124 (10)	-0.0017 (8)	0.0053 (8)	0.0016 (8)
C32	0.0399 (13)	0.0180 (12)	0.0194 (11)	-0.0010 (10)	0.0141 (10)	0.0016 (9)
C33	0.0635 (17)	0.0268 (14)	0.0209 (12)	-0.0001 (12)	0.0209 (12)	0.0006 (10)
C34	0.0724 (19)	0.0254 (14)	0.0150 (11)	-0.0048 (13)	0.0054 (12)	0.0019 (10)
C35	0.0384 (14)	0.0359 (16)	0.0276 (13)	-0.0009 (12)	-0.0061 (11)	0.0058 (11)
C36	0.0268 (11)	0.0312 (14)	0.0227 (12)	0.0019 (10)	0.0036 (9)	0.0056 (10)
Br	0.01837 (10)	0.02032 (12)	0.01603 (10)	-0.00379 (8)	0.00159 (8)	0.00096 (8)

Geometric parameters (Å, °)

Pd—As ⁱ	2.4184 (3)	C22—C23	1.394 (3)
Pd—As	2.4184 (3)	C22—H22	0.9500
Pd—Br	2.4196 (3)	C23—C24	1.372 (4)
Pd—Br ⁱ	2.4196 (3)	С23—Н23	0.9500
As—C11	1.931 (2)	C24—C25	1.374 (4)
As—C21	1.9383 (19)	C24—H24	0.9500
As—C31	1.942 (2)	C25—C26	1.395 (3)
C11—C16	1.378 (3)	С25—Н25	0.9500
C11—C12	1.385 (3)	C26—H26	0.9500
C12—C13	1.391 (4)	C31—C32	1.391 (3)
C12—H12	0.9500	C31—C36	1.393 (3)
C13—C14	1.365 (4)	C32—C33	1.382 (3)
C13—H13	0.9500	С32—Н32	0.9500
C14—C15	1.371 (4)	C33—C34	1.367 (4)
C14—H14	0.9500	С33—Н33	0.9500
C15—C16	1.384 (3)	C34—C35	1.389 (4)
C15—H15	0.9500	C34—H34	0.9500
С16—Н16	0.9500	C35—C36	1.390 (3)
C21—C22	1.380 (3)	С35—Н35	0.9500
C21—C26	1.385 (3)	С36—Н36	0.9500
As ⁱ —Pd—As	180.000 (6)	C21—C22—C23	119.8 (2)
As ⁱ —Pd—Br	89.876 (10)	C21—C22—H22	120.1
As—Pd—Br	90.124 (10)	С23—С22—Н22	120.1
As ⁱ —Pd—Br ⁱ	90.124 (10)	C24—C23—C22	119.8 (2)
As—Pd—Br ⁱ	89.876 (10)	С24—С23—Н23	120.1

Br—Pd—Br ⁱ	180.0	С22—С23—Н23	120.1
C11—As—C21	102.85 (9)	C23—C24—C25	120.8 (2)
C11—As—C31	103.93 (9)	C23—C24—H24	119.6
C21—As—C31	102.82 (8)	С25—С24—Н24	119.6
C11—As—Pd	110.05 (6)	C24—C25—C26	119.8 (2)
C21—As—Pd	114.63 (6)	С24—С25—Н25	120.1
C31—As—Pd	120.65 (6)	С26—С25—Н25	120.1
C16—C11—C12	119.4 (2)	C21—C26—C25	119.6 (2)
C16—C11—As	118.30 (16)	C21—C26—H26	120.2
C12—C11—As	122.23 (17)	С25—С26—Н26	120.2
C11—C12—C13	119.6 (2)	C32—C31—C36	119.5 (2)
C11—C12—H12	120.2	C32—C31—As	120.45 (16)
C13—C12—H12	120.2	C36—C31—As	120.05 (16)
C14—C13—C12	120.6 (3)	C33—C32—C31	120.4 (2)
C14—C13—H13	119.7	С33—С32—Н32	119.8
С12—С13—Н13	119.7	С31—С32—Н32	119.8
C13—C14—C15	119.8 (2)	C34—C33—C32	120.1 (2)
C13—C14—H14	120.1	С34—С33—Н33	119.9
C15-C14-H14	120.1	С32—С33—Н33	119.9
C14—C15—C16	120.3 (2)	C33—C34—C35	120.4 (2)
C14—C15—H15	119.8	С33—С34—Н34	119.8
C16—C15—H15	119.8	С35—С34—Н34	119.8
C11—C16—C15	120.2 (2)	C34—C35—C36	120.1 (2)
C11—C16—H16	119.9	С34—С35—Н35	120.0
C15—C16—H16	119.9	С36—С35—Н35	120.0
C22—C21—C26	120.19 (19)	C35—C36—C31	119.5 (2)
C22—C21—As	121.45 (16)	С35—С36—Н36	120.2
C26—C21—As	118.35 (17)	С31—С36—Н36	120.2
Br—Pd—As—C11	-98.07 (6)	C31—As—C21—C26	78.50 (18)
Br ⁱ —Pd—As—C11	81.93 (6)	Pd—As—C21—C26	-54.30 (17)
Br—Pd—As—C21	146.61 (7)	C26—C21—C22—C23	-0.5 (3)
Br ⁱ —Pd—As—C21	-33.39 (7)	As-C21-C22-C23	-179.43 (15)
Br—Pd—As—C31	22.87 (7)	C21—C22—C23—C24	-1.7 (3)
Br ⁱ —Pd—As—C31	-157.13 (7)	C22—C23—C24—C25	2.0 (3)
C21—As—C11—C16	90.26 (17)	C23—C24—C25—C26	-0.2 (4)
C31—As—C11—C16	-162.82 (16)	C22-C21-C26-C25	2.3 (3)
Pd—As—C11—C16	-32.31 (17)	As-C21-C26-C25	-178.68 (17)
C21—As—C11—C12	-86.42 (19)	C24—C25—C26—C21	-2.0 (4)
C31—As—C11—C12	20.5 (2)	C11—As—C31—C32	-130.34 (18)
Pd—As—C11—C12	151.01 (17)	C21—As—C31—C32	-23.4 (2)
C16-C11-C12-C13	0.3 (3)	Pd—As—C31—C32	105.78 (17)
As-C11-C12-C13	176.92 (19)	C11—As—C31—C36	51.1 (2)
C11-C12-C13-C14	-0.8 (4)	C21—As—C31—C36	158.07 (18)
C12-C13-C14-C15	0.5 (4)	Pd—As—C31—C36	-72.76 (19)
C13—C14—C15—C16	0.1 (4)	C36—C31—C32—C33	-0.9 (3)
C12—C11—C16—C15	0.4 (3)	As-C31-C32-C33	-179.42 (18)
As-C11-C16-C15	-176.38 (18)	C31—C32—C33—C34	-0.3 (4)
C14-C15-C16-C11	-0.6 (4)	C32—C33—C34—C35	1.0 (4)

supplementary materials

C11—As—C21—C22	5.24 (18)	C33—C34—C35—C36	-0.6 (4)
C31—As—C21—C22	-102.53 (17)	C34—C35—C36—C31	-0.5 (4)
Pd—As—C21—C22	124.67 (15)	C32—C31—C36—C35	1.3 (4)
C11—As—C21—C26	-173.72 (16)	As-C31-C36-C35	179.81 (19)
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C13—H13···Br ⁱⁱ	0.95	2.90	3.807 (3)	160
C25—H25···Br ⁱⁱⁱ	0.95	2.98	3.914 (3)	168
Symmetry codes: (ii) $-x+3/2$, $y-1/2$, $-z+3/2$; (iii) $x-1$, y , z .				

